Resolving TDP measurement and spec values

Draft text for review 22nd August 2013 Inputs from Pete Anslow, Mike Dudek Jonathan King, and John Petrilla.

$$TDP = P_{\{DUT_Tx, stress+ref_Rx\}} - S_{\{ref_Tx, ref_Rx\}}$$

- In the definition of TDP in Clause 95, the ref_Rx has a bandwidth restriction (12.6 GHz) which adds the stress equivalent to 100 m OM4, similar to Clause 86, including the deterministic effects of worst case chromatic dispersion.
- In practice, the ref_Tx is expected to have rise-fall times of 12 ps, which, in combination with the 12.6 GHz ref_Rx, will result in significant ISI penalty, and a reference sensitivity measurement which is higher than for a 1 ps rise/fall time Tx measured into a Rx with a bandwidth of 0.75 x bitrate.
- To align the TDP spec value in Table 95-6 and the measured values of TDP (as currently defined), the effect of ISI introduced by the 12.6 GHz ref Rx should be corrected for in the reference sensitivity measurement.
- There are several ways of doing this:
 - 1. Use a 0.75 x bitrate bandwidth receiver for the reference sensitivity measurement with the ref_Tx.
 - 2. Add a correction to the TDP value
 - 3. Add an additional line item into the allocation for penalties which accounts for the correction required.

Options

- Option 1 would specify that the ref Rx has 19.3 GHz bandwidth for the reference sensitivity measurement
 - This means effectively two different receivers are used for measuring the ref_Tx and DUT_Tx sensitivity measurements, which has several practical difficulties
- Option 2 would add text to 95.8.5, describing the TDP test, to include the correction factor in the formula for TDP.
- Option 3 would add a note to the 'Allocation for penalties' in Table 95-8, saying that the allocation for penalties is larger than the TDP to account for (among other things) the restricted bandwidth receiver used to measure the reference sensitivity S.
- In discussion, no-one supported option 1, because of the practical difficulty of using effectively two different receivers to measure a difference in sensitivity.
- Option 2 and 3 were discussed (as were alternatives with higher and lower bandwidth reference receivers); Option 2 was favored because it makes the resulting TDP number closest to the worst case penalty due to transmitter ISI and path penalty.

Proposed changes to clause 95 D1p1 (for Option 2)

- In section 95.8.5 modify items 'd' and 'g' to become:
- "d) The reference transmitter rise/fall times should be less than 12 ps at 20% to 80%. The reference transmitter optical waveform is measured for vertical eye closure penalty (VECP), as defined in Equation 52-4, but evaluated at +/- 0.11 UI from the eye center, using a receiver with a fourth-order Bessel-Thomson filter response with a bandwidth of 12.6 GHz."
- "g) The reference sensitivity S and the measurement P_DUT are both measured with the sampling instant displaced from the eye center by ± 0.11 UI. Because the reference sensitivity test is done with a restricted bandwidth receiver, a correction is required to calculate S. S is equal to the measured sensitivity minus the measured reference transmitter VECP from item d).

For each of the two cases (early and late), if $P_DUT(i)$ is larger than S(i), the TDP(i) for the transmitter under test is the difference between $P_DUT(i)$ and S(i), i.e. $TDP(i) = P_DUT(i) - S(i)$. Otherwise, TDP(i) = 0. The TDP(i) is the larger of the two TDP(i)."